Skip to main content

Linear Algebra

Vector

What is a vector?

A vector is a quantity or phenomenon that has two independent properties: magnitude and direction. Vectors are special objects that can be added together and multiplied by scalars to produce another object of the same kind.

a, Example of Vector

Vector

b, Example of Added Vector

Vector

c, Example of Scale Vector

Vector

Vector Representation

Only 2D and 3D can use geometric vectors. How many extra dimensions would the vector have?

In n-dimensional space, the vectors will be represented as follows:

a=[a1a2a3...an]Rn,v=[123]R3a= \begin{bmatrix} a_1\\a_2\\a_3\\...\\a_n \end{bmatrix} \in R^n , v= \begin{bmatrix} 1\\2\\3 \end{bmatrix} \in R^3

In multidimensional space vectors also have two properties: addition and multiplication:

[a1a2...an]+[b1b2...bn]=[a1+b1a2+b2..an+bn],α[a1a2...an]=[αa1αa2...αan]\begin{bmatrix} a_1\\a_2\\...\\a_n \end{bmatrix} + \begin{bmatrix} b_1\\b_2\\...\\b_n \end{bmatrix} = \begin{bmatrix} a_1+b_1\\a_2+b_2\\..\\a_n +b_n \end{bmatrix}, \quad \alpha * \begin{bmatrix} a_1\\a_2\\...\\a_n \end{bmatrix} =\begin{bmatrix} \alpha *a_1\\\alpha *a_2\\...\\\alpha *a_n \end{bmatrix}

Matrix

What is the matrix?

Matrix a set of numbers arranged in rows and columns so as to form a rectangular array. Example of matrix

A=[a11a12...a1na21a22...a2nam1am2...amn]Rm×n=concat([a11a12...a1n],[a21a22...a2n],...,[an1an2...amn])A = \begin{bmatrix} a_{11}&a_{12}&...&a_{1n}\\ a_{21}&a_{22}&...&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{m1}&a_{m2}&...&a_{mn} \end{bmatrix} \in R^{m\times{}n}\\ \\ = concat( \begin{bmatrix} a_{11}\\a_{12}\\...\\a_{1n} \end{bmatrix}, \begin{bmatrix} a_{21}\\a_{22}\\...\\a_{2n} \end{bmatrix}, ..., \begin{bmatrix} a_{n1}\\a_{n2}\\...\\a_{mn} \end{bmatrix})

Matrix addition

ARm×n,BRm×nA+B=[a11+b11a12+b21...a1n+b1na21+b21a22+b22...a2n+b2nam1+bm1am2+bm2...amn+bmn]Rm×nA \in R^{m\times{}n},\quad B \in R^{m\times{}n} \\ A+B= \begin{bmatrix} a_{11}+b_{11}&a_{12}+b_{21}&...&a_{1n}+b_{1n}\\ a_{21}+b_{21}&a_{22}+b_{22}&...&a_{2n}+b_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{m1}+b_{m1}&a_{m2}+b_{m2}&...&a_{mn}+b_{mn} \end{bmatrix} \in R^{m\times{}n}

Hadamard product

ARmn,BRmnAB=[a11b11a12b21...a1nb1na21b21a22b22...a2nb2nam1bm1am2bm2...amnbmn]RmnA \in R^{m*n},\quad B \in R^{m*n} \\ A \bigotimes B= \begin{bmatrix} a_{11}b_{11}&a_{12}b_{21}&...&a_{1n}b_{1n}\\ a_{21}b_{21}&a_{22}b_{22}&...&a_{2n}b_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{m1}b_{m1}&a_{m2}b_{m2}&...&a_{mn}b_{mn} \end{bmatrix} \in R^{m*n}

Matrix multiplication

ARm×n,BRn×k,C=AB,Cij=k=1naikbkj[122011][23]=[1×2+2×32×2+0×31×2+1×3]=[845]A \in R^{m\times{}n},\quad B \in R^{n\times{}k}, \quad C =AB, \quad C_{ij} = \sum^n_{k=1} a_{ik}b_{kj} \\ \begin{bmatrix} 1&2\\2&0\\1&1 \end{bmatrix} \begin{bmatrix} 2\\3 \end{bmatrix} =\begin{bmatrix} 1\times{}2+2\times{}3\\2\times{}2+0\times{}3\\1\times{}2+1\times{}3 \end{bmatrix} = \begin{bmatrix} 8\\4\\5 \end{bmatrix}

Different view

Matrix multiplication

matrix multi

Example

[122011][23]=2[121]+3[201]=[845]\begin{bmatrix} 1&2\\2&0\\1&1 \end{bmatrix} \begin{bmatrix} 2\\3 \end{bmatrix} =2 \begin{bmatrix} 1\\2\\1 \end{bmatrix} + 3 \begin{bmatrix} 2\\0\\1 \end{bmatrix} = \begin{bmatrix} 8\\4\\5 \end{bmatrix}

Identity matrix

Identity matrix is a square matrix, with the value:

Iij={1if i=j0if ijI_{ij} = \begin{cases} 1 &\quad \text{if } i=j \\ 0 &\quad \text{if } i \neq j \end{cases}
In=[100010001]Rn×nI_n= \begin{bmatrix} 1&0&\cdots&0\\ 0&1&\cdots&0\\ \cdots&\cdots&\cdots&\cdots\\ 0&0&\cdots&1 \end{bmatrix} \in R^{n\times n}

Matrix properties

  • ARm×n,BRn×p,CRp×q:(AB)C=A(BC)\forall A \in R^{m\times n}, B \in R^{n\times p}, C \in R^{p\times q}: (AB)C = A(BC)
  • A,BRm×n,C,DRn×p\forall A, B \in R^{m\times n}, C, D \in R^{n\times p} \\
    (A+B)C=AC+BCA(C+D)=AC+AD\quad \quad \quad (A+B)C=AC + BC \\ \quad \quad \quad A(C+D)=AC + AD
  • ARm×n:ImA=AIn=A,note that :ImIn\forall A \in R^{m \times n}: I_mA = AI_n =A, \text{note that }: I_m \neq I_n

Transpose

ARm×nB=ATRn×m,aij=bjiA \in R^{m\times n} \Rightarrow B = A^T \in R^{n \times m}, a_{ij} = b_{ji}
A=[a11a12...a1na21a22...a2nam1am2...amn]B=[a11a21...am1a12a22...am2a1na2n...amn]A = \begin{bmatrix} a_{11}&a_{12}&...&a_{1n}\\ a_{21}&a_{22}&...&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{m1}&a_{m2}&...&a_{mn} \end{bmatrix} \Rightarrow B = \begin{bmatrix} a_{11}&a_{21}&...&a_{m1}\\ a_{12}&a_{22}&...&a_{m2}\\ \vdots&\vdots&\ddots&\vdots\\ a_{1n}&a_{2n}&...&a_{mn} \end{bmatrix}
A matrix ARm×nis symmetric if AT=A\text{A matrix } A \in R^{m\times n} \text{is symmetric if } A^T = A

Inverse

Square matrix A and matrix B belong to the same n-dimensional space with the property that AB = BA = Identity matrix, then B is called the inverse matrix of A.

Not every matrix A has an inverse,if the inverse does exist, A is called regular/invertible/nonsingular matrix.

Liner equation

{2x+y=1xy=1{2x1+x2=1x1x2=1\begin{cases} 2x+y=1\\x-y=-1 \end{cases} \Leftrightarrow \begin{cases} 2x_1+x_2=1\\x_1-x_2=-1 \end{cases}
[2111][x1x2]=[11]x1[21]+x2[11]=[11]\Leftrightarrow \begin{bmatrix} 2&1\\1&-1 \end{bmatrix} \begin{bmatrix} x_1\\x_2 \end{bmatrix} = \begin{bmatrix} 1\\-1 \end{bmatrix} \Leftrightarrow x_1 \begin{bmatrix} 2\\1 \end{bmatrix} + x_2 \begin{bmatrix} 1\\-1 \end{bmatrix} =\begin{bmatrix} 1\\-1 \end{bmatrix}

General formula

{a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2am1x1+am2x2++amnxn=bmAx=B\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n =b_1\\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n =b_2\\ \cdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n =b_m \end{cases} \Leftrightarrow Ax= B
=[a11a12...a1na21a22...a2nam1am2...amn][x1x2xn]=[b1b2bm]\Leftrightarrow =\begin{bmatrix} a_{11}&a_{12}&...&a_{1n}\\ a_{21}&a_{22}&...&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{m1}&a_{m2}&...&a_{mn} \end{bmatrix} \begin{bmatrix} x_1\\x_2\\ \vdots\\x_n \end{bmatrix} = \begin{bmatrix} b_1\\b_2\\ \vdots \\ b_m \end{bmatrix}

Example solving Linear Equations using Matrix Method

Illustration: Solve the following equations by matrix inversion

{x1+8x34x4=42x2+2x3+12x4=8\begin{cases} x_1+8x_3-4x_4=42\\ x_2+2x_3+12x_4=8\\ \end{cases} \\

Solution

[108401212][x1x2x3x4]=[428]\begin{bmatrix} 1&0&8&-4\\0&1&2&12 \end{bmatrix} \begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}= \begin{bmatrix} 42\\8 \end{bmatrix}
x1[10]+x2[01]+x3[82]+x4[412]=[428]\Leftrightarrow x_1 \begin{bmatrix}1\\0\end{bmatrix} + x_2 \begin{bmatrix}0\\1\end{bmatrix} + x_3 \begin{bmatrix}8\\2\end{bmatrix} + x_4 \begin{bmatrix}-4\\12\end{bmatrix} = \begin{bmatrix} 42\\8 \end{bmatrix}
i=14xici=b\Leftrightarrow \sum^4_{i=1} x_ic_i = b

with c is columns

We can see that x=[42,8,0,0]T(Ax=b)(1)x^*=[42,8,0,0]^T(\Rightarrow Ax^*=b)(1) is solution, it is called particular soluyion or special solution.

So how do we find the remaining solutions of the equation?

We have:

c3=[82]=8c1+2c2c38c12c2=0c_3 = \begin{bmatrix} 8\\2 \end{bmatrix} = 8c_1 + 2c_2 \Rightarrow c_3-8c_1-2c_2 = 0
[c1c2c3c4][8210]=0Aλ1[8210]=0,λ1R\Leftrightarrow \begin{bmatrix} c_1&c_2&c_3&c_4 \end{bmatrix} \begin{bmatrix}-8\\-2\\1\\0\end{bmatrix} = 0 \Leftrightarrow \begin{equation} A \lambda_1 \begin{bmatrix}-8\\-2\\1\\0 \end{bmatrix}=0 , \lambda_1 \in R \end{equation}

Similar:

Aλ2[41201]=0,λ2R\begin{equation} A \lambda_2 \begin{bmatrix}4\\-12\\0\\1 \end{bmatrix}=0 , \lambda_2 \in R \end{equation}

From (1),(2)and (3)(1), (2) \text{and } (3) we have:

A(x+λ1[8210]+λ2[41201])=b,λ1λ2RA(x^* +\lambda_1 \begin{bmatrix}8\\-2\\1\\0 \end{bmatrix} + \lambda_2 \begin{bmatrix}4\\-12\\0\\1\end{bmatrix}) =b, \lambda_1 \lambda_2 \in R

Finally: x=[42800]+λ1[8210]+λ2[41201],λ1λ2Rx=\begin{bmatrix}42\\8\\0\\0\end{bmatrix} + \lambda_1\begin{bmatrix}8\\-2\\1\\0\end{bmatrix} + \lambda_2 \begin{bmatrix}4\\-12\\0\\1\end{bmatrix}, \lambda_1 \lambda_2 \in R

How to solve system of equations:

\bullet Find a particular solution to Ax=bAx=b

\bullet Find all solutions to Ax=0Ax=0

\bullet Combine the solutions from steps 1. and 2. to general solution

Row-Echelon Form

A matrix is in row-echelon form if:

\bullet All rows that contain only zeros are at the bottom of matrix

\bullet Looking at nonzero rows only, the first nonzero number from the left pivot (also called the pivot or the leading coefficient) is always strictly to the leading coefficient right of the pivot of the row above it.

Remark: The variables corresponding to the pivots in the row-echelon form are called basic variables and the other basic variable variables are free variables.

12111001130001200000021a+1\left\lceil \begin{matrix} 1&-2&1&-1&1 \\ 0&0&1&-1&3 \\0&0&0&1&-2 \\0&0&0&0&0 \end{matrix} \right\rvert \left\rvert \begin{matrix} 0\\-2\\1\\ a+1 \end{matrix} \right\rceil

x1,x3,x4x_1,x_3,x_4 are basic variable, x2,x5x_2, x_5 are free variables.

An equation system is in reduced reduced row-echelon form if:

\bullet It is in row-echelon form.

\bullet Every pivot is 1.

\bullet The pivot is the only nonzero entry in its column.

Gaussian elimination is an algorithm that elimination performs elementary transformations to bring a system of linear equations into reduced row-echelon form.

Exercise

Ex1: Compute the following matrix products, if possible:

(a) A=[123][123]A=\begin{bmatrix}1\\2\\3 \end{bmatrix} \begin{bmatrix}1&2&3 \end{bmatrix}

A=[1×12×23×3]=[149]A = \begin{bmatrix}1\times1 & 2\times 2 & 3\times3 \end{bmatrix} = \begin{bmatrix} 1&4&9 \end{bmatrix}

(b) B=[123][123]B=\begin{bmatrix}1&2&3 \end{bmatrix} \begin{bmatrix}1\\2\\3 \end{bmatrix}

B=[1×1+2×2+3×3]=14B = [1\times1 + 2\times 2 + 3\times3] = 14

(c) C=[124578][110011101]C=\begin{bmatrix}1&2\\4&5\\7&8 \end{bmatrix} \begin{bmatrix}1&1&0\\0&1&1\\1&0&1 \end{bmatrix}

We cannot solve that calculation, because the number of elements in the row is not equal to the number of elements in the column

(d) D=[110011101][123456789]D=\begin{bmatrix}1&1&0\\0&1&1\\1&0&1 \end{bmatrix} \begin{bmatrix}1&2&3\\4&5&6\\7&8&9\end{bmatrix}

D=[57911131581012]D = \begin{bmatrix} 5&7&9\\11&13&15 \\ 8&10&12 \end{bmatrix}

(e) E=[12124114][03112152]E=\begin{bmatrix} 1&2&1&2\\4&1&-1&-4 \end{bmatrix} \begin{bmatrix} 0&3\\1&-1\\2&1\\5&2\end{bmatrix}

E=[146212]E = \begin{bmatrix} 14&6\\-21&2 \end{bmatrix}

Ex2: Using Gaussian elimination, find the set SS of all solutions in x of the following inhomogeneous linear systems Ax=bAx = b where AA and bb are defined as follows:

(a) A=[111021114][110]A=\begin{bmatrix} 1&1&-1\\0&2&1\\1&1&-4 \end{bmatrix} \begin{bmatrix}1\\1\\0 \end{bmatrix}

We have:

111021114110=111114021100=111003021111\left\lceil \begin{matrix} 1&1&-1\\0&2&1\\1&1&-4 \end{matrix} \right\rvert \left\rvert \begin{matrix} 1\\1\\0 \end{matrix} \right\rceil = \left\lceil \begin{matrix} 1&1&-1\\1&1&-4\\0&2&1 \end{matrix} \right\rvert \left\rvert \begin{matrix} 1\\0\\0 \end{matrix} \right\rceil = \left\lceil \begin{matrix} 1&1&-1\\0&0&3\\0&2&1 \end{matrix} \right\rvert \left\rvert \begin{matrix} 1\\1\\1 \end{matrix} \right\rceil
{x+yz=13z=12y+z=1{x=1y=13z=13\Leftrightarrow \begin{cases} x+y-z=1\\3z=1\\2y+z=1 \end{cases} \Leftrightarrow \begin{cases} x=1\\y=\frac{1}{3}\\z=\frac{1}{3} \end{cases}

(b) B=[1111257521135242][1246]B=\begin{bmatrix} 1&1&-1&-1\\2&5&-7&-5\\2&-1&1&3\\5&2&-4&2 \end{bmatrix} \begin{bmatrix}1\\-2\\4\\6 \end{bmatrix}

We have:

11112575211352421246=11110353033503171421\left\lceil \begin{matrix} 1&1&-1&-1\\2&5&-7&-5\\2&-1&1&3\\5&2&-4&2 \end{matrix} \right\rvert \left\rvert \begin{matrix} 1\\-2\\4\\6 \end{matrix} \right\rceil = \left\lceil \begin{matrix} 1&1&-1&-1\\0&-3&5&3\\0&-3&3&5\\0&-3&1&7 \end{matrix} \right\rvert \left\rvert \begin{matrix} 1\\4\\2\\1 \end{matrix} \right\rceil
=11110353002200441423=111103530011001114134=111103530011000214114= \left\lceil \begin{matrix} 1&1&-1&-1\\0&-3&5&3\\0&0&2&-2\\0&0&4&4 \end{matrix} \right\rvert \left\rvert \begin{matrix} 1\\4\\2\\3 \end{matrix} \right\rceil = \left\lceil \begin{matrix} 1&1&-1&-1\\0&-3&5&3\\0&0&1&-1\\0&0&1&1 \end{matrix} \right\rvert \left\rvert \begin{matrix} 1\\4\\1\\\frac{3}{4} \end{matrix} \right\rceil = \left\lceil \begin{matrix} 1&1&-1&-1\\0&-3&5&3\\0&0&1&-1\\0&0&0&-2 \end{matrix} \right\rvert \left\rvert \begin{matrix} 1\\4\\1\\\frac{1}{4} \end{matrix} \right\rceil
{x+y+z+m=13y+5z+3m=4zm=12m=14{x=32y=54z=78m=18\Rightarrow \begin{cases} x+y+z+m =1 \\-3y+5z+3m=4\\z-m=1\\-2m=\frac{1}{4} \end{cases} \Rightarrow \begin{cases} x=\frac{3}{2} \\ y=\frac{5}{4}\\ z= \frac{7}{8}\\m=\frac{-1}{8} \end{cases}

(c) C=[211121][36]C=\begin{bmatrix} 2&1&1\\-1&2&1 \end{bmatrix} \begin{bmatrix}3\\6 \end{bmatrix}

(d) C=[211211][361]C=\begin{bmatrix}2&1\\-1&2\\1&1 \end{bmatrix} \begin{bmatrix}3\\6\\-1 \end{bmatrix}

Ex3: Determine the inverses of the following matrices if possible:

(a) A=[200010006]A=\begin{bmatrix} 2&0&0\\0&-1&0\\0&0&6 \end{bmatrix}

We have: AA1=IAA^{-1} =I

[200010006][a11a12a13a21a22a23a31a32a33]=[100010001]\begin{bmatrix} 2&0&0\\0&-1&0\\0&0&6\end{bmatrix} \begin{bmatrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{bmatrix} = \begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix}
[2a112a122a13a21a22a236a316a326a33]=[100010001]\Leftrightarrow \begin{bmatrix} -2a_{11}&2a_{12}&2a_{13}\\-a_{21}&-a_{22}&-a_{23}\\6a_{31}&6a_{32}&6a_{33}\end{bmatrix} = \begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix}
A1=[12000100016]\Leftrightarrow A^{-1} = \begin{bmatrix} \frac{1}{2}&0&0\\0&-1&0\\0&0&\frac{1}{6} \end{bmatrix}

(b) B=[4131]B=\begin{bmatrix} 4&1\\3&1 \end{bmatrix}

We have: BB1=IBB^{-1} =I

[4131][a11a12a21a22]=[1001]\begin{bmatrix} 4&1\\3&1 \end{bmatrix} \begin{bmatrix} a_{11}&a_{12}\\a_{21}&a_{22} \end{bmatrix} = \begin{bmatrix} 1&0\\0&1\end{bmatrix}
[4a11+a214a12+a223a11+a213a12+a22]=[1001]\Leftrightarrow \begin{bmatrix} 4a_{11} + a_{21}&4a_{12}+a_{22}\\3a_{11}+a_{21}&3a_{12}+a_{22} \end{bmatrix} = \begin{bmatrix} 1&0\\0&1\end{bmatrix}
B1=[1134]\Rightarrow B^{-1} = \begin{bmatrix} 1&-1\\-3&4 \end{bmatrix}

Linear Independent

Group

Consider a set G\mathcal{G} and an operation \otimes: G×GG\mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G} defined on G\mathcal{G}. Then G:=(G,)\mathcal{G} := (\mathcal{G},\otimes) is called a group if the following hold:

x,yG,xyG\bullet \forall x, y \in \mathcal{G} , x \otimes y \in \mathcal{G}

x,y,zG,(xy)z=x(yz)\bullet \forall x,y,z \in \mathcal{G}, (x\otimes y) \otimes z = x \otimes (y \otimes z)

eG,xG:xe=ex=x\bullet \exists e \in \mathcal{G} , \forall x \in \mathcal{G}: x\otimes e = e\otimes x = x

xG,yG:xy=yx=e\bullet \forall x \in \mathcal{G}, \exists y \in \mathcal{G}: x \otimes y = y \otimes x =e

If additionally, x,yG:xy=yx\forall x,y \in \mathcal{G}: x \otimes y = y \otimes x then G=(G,)G=(\mathcal{G}, \otimes) is an Abelian group

Example

With (R,+)(R,+)

x,yRx+yR\bullet \forall x,y \in R \rightarrow x+y \in R

x,y,zR(xy)+z=x+(y+z)\bullet \forall x,y,z \in R \rightarrow (x-y)+z = x+(y+z)

xR,e=0:x+0=0+x\bullet \forall x \in R , \exists e=0: x+0 =0+x

xR,y=xx+y=0\bullet \forall x \in R , \exists y=-x \rightarrow x+y = 0

(R,+)\Rightarrow (R,+) is a group

With (Z,×)(Z, \times)

x,yZx×yZ\bullet \forall x,y \in Z \rightarrow x\times y \in Z

x,y,zZ(x×y)×z=x×(y×z)\bullet \forall x,y,z \in Z \rightarrow (x\times y)\times z = x\times (y\times z)

xZ,e=1:x×1=1×x\bullet \forall x \in Z , \exists e=1: x\times 1 =1 \times x

xZ,y=0x×y=y×x=0e\bullet \forall x \in Z , \exists y=0 \rightarrow x\times y =y\times x = 0 \neq e

(Z,×)\Rightarrow (Z,\times) is not a group

With (Rn,.)(R^n, .)

x,yRn(vector)x+yRn\bullet \forall x,y \in R^n (vector) \rightarrow x + y \in R^n

x,y,zRn(xy)+z=x+(y+z)\bullet \forall x,y,z \in R^n \rightarrow (x-y)+z = x+(y+z)

xRn,e=[11...1]:x+e=e+x\bullet \forall x \in R^n , \exists e=\begin{bmatrix}1\\1\\...\\1\end{bmatrix}: x+e =e+x

xRn,y=xx+y=0\bullet \forall x \in R^n , \exists y=-x \rightarrow x+y = 0

(Rn,+)\Rightarrow (R^n,+) is a group

With (Rn×n,×)(R^{n\times n}, \times)

Does not satisfy condition 4, because we have A.B=InA.B=I_n but not all square matrices have inverse matrices

(Rn×n,×)\Rightarrow (R^{n\times n}, \times) is not a group

Vector space

A real-valued vector space V=(V;+;×)V=(\mathcal{V};+;\times) is a set V\mathcal{V} with to operations:

(V;+)is an Abelian group\bullet (\mathcal{V};+) \text{is an Abelian group}

λ,γr,x,yV:\bullet \forall \lambda,\gamma \in r, x,y \in \mathcal{V}:

λ(x+y)=λx+λy\quad \quad \quad \lambda(x+y)= \lambda x+\lambda y

(λ+γ)x=λx+γx\quad \quad \quad (\lambda + \gamma)x= \lambda x+\gamma x

λ,γR,xV:λ(γx)=(λγ)x\bullet \forall \lambda, \gamma \in R, x \in \mathcal{V}: \lambda(\gamma x) = (\lambda \gamma)x

1×x=x\bullet 1\times x=x

The elements xVx \in \mathcal{V} are called vectors, examples: V=Rn\mathcal{V} = R^n.

We will denote a vector space (V,+,.)(\mathcal{V}, +, .) by V when + and . are the standard vector addition and scalar multiplication.

Moreover, we will use the notation xVx\in V for vectors in V\mathcal{V} to simplify notation.

Default, the vectors are column vectors:

x=[x1x2..xn]Rn×1xT=[x1x2...xn]R1×nx=\begin{bmatrix}x_1\\x_2\\..\\ x_n\end{bmatrix} \in R^{n\times 1} \Rightarrow x^T = \begin{bmatrix} x_1 & x_2 & ... & x_n \end{bmatrix} \in R^{1\times n }

Vector subspaces